Application of photosynthetic N2-fixing cyanobacteria to the CELSS program.
نویسندگان
چکیده
The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the CELSS program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) has been addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1% to 35% (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.
منابع مشابه
Hydrogen photoproduction by immobilized n2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process.
We have investigated two approaches to enhance and extend H2 photoproduction yields in heterocystous, N2-fixing cyanobacteria entrapped in thin alginate films. In the first approach, periodic CO2 supplementation was provided to alginate-entrapped, N-deprived cells. N deprivation led to the inhibition of photosynthetic activity in vegetative cells and the attenuation of H2 production over time. ...
متن کاملOxygen relations of nitrogen fixation in cyanobacteria.
The enigmatic coexistence of O2-sensitive nitrogenase and O2-evolving photosynthesis in diazotrophic cyanobacteria has fascinated researchers for over two decades. Research efforts in the past 10 years have revealed a range of O2 sensitivity of nitrogenase in different strains of cyanobacteria and a variety of adaptations for the protection of nitrogenase from damage by both atmospheric and pho...
متن کاملToxin production by Crocosphaera watsonii: structure and influence on nutrient cycling in the upper ocean
Cyanobacteria are abundant components of the biosphere and play a crucial role in carbon sequestration and oxygen supply to the atmosphere. In addition to their photosynthetic capabilities, some cyanobacteria contribute to global ocean productivity by fixing inert atmospheric nitrogen gas (N2) into a bioavailable form. Many of these nitrogen-fixing bacteria (diazotrophs) also produce toxic meta...
متن کاملGlobally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II.
Biological nitrogen (N2) fixation is important in controlling biological productivity and carbon flux in the oceans. Unicellular N2-fixing cyanobacteria have only recently been discovered and are widely distributed in tropical and subtropical seas. Metagenomic analysis of flow cytometry-sorted cells shows that unicellular N2-fixing cyanobacteria in "group A" (UCYN-A) lack genes for the oxygen-e...
متن کاملStructural Diversity of Bacterial Communities Associated with Bloom-Forming Freshwater Cyanobacteria Differs According to the Cyanobacterial Genus
The factors and processes driving cyanobacterial blooms in eutrophic freshwater ecosystems have been extensively studied in the past decade. A growing number of these studies concern the direct or indirect interactions between cyanobacteria and heterotrophic bacteria. The presence of bacteria that are directly attached or immediately adjacent to cyanobacterial cells suggests that intense nutrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in space research : the official journal of the Committee on Space Research
دوره 7 4 شماره
صفحات -
تاریخ انتشار 1987